日本の夏季におけるGWの地域性とその経年変化

<table>
<thead>
<tr>
<th>著者</th>
<th>福井 健弘</th>
</tr>
</thead>
<tbody>
<tr>
<td>出版者</td>
<td>法政大学地理学会</td>
</tr>
<tr>
<td>雑誌名</td>
<td>法政地理</td>
</tr>
<tr>
<td>巻</td>
<td></td>
</tr>
<tr>
<td>ページ</td>
<td></td>
</tr>
<tr>
<td>発行年</td>
<td></td>
</tr>
<tr>
<td>ISSN</td>
<td></td>
</tr>
</tbody>
</table>
日本の夏季における WBGT の地域性とその経年変化

福井 健弘

現在の日本では、熱中症対策として WBGT (Wet-Bulb Globe Temperature) が広く用いられている。しかし、WBGT は、乾球温度と湿球温度、そして黒球温度の測定が必要であるが、その黒球温度の測定は、全国で 9 地点しか常設されていないのが現状である。小野・登内（2014）では、気象台で通常観測される気象要素を用いて、WBGT 標準式を推定した。本研究では、その推定式を用いて、日本の夏季対象に WBGT の地域性とその経年変化を調べた。本研究で得られた結果を以下のようにまとめると。①東日本から西日本、また南西諸島に至って、「厳重警戒」の分布域が形成され、北海道と東北北部から太平洋側に属する範囲では、「注意」の分布域となっている。また東北地方から関東や北陸地方の範囲では、温度基準が「注意」から「厳重警戒」へ変化する帯状地帯となっていると考えられる。②気温の高さと WBGT の高さは、比例する関係になる地点がほとんどだが、変則的な地点も現れた。③ WBGT 28.0℃以上の 20 年間（1991年〜2010年）の動向をグラフで表すると、各温度基準の割合は、年次激しく変動していることから、近年に向けて WBGT 値は上昇しているという評価は得られなかった。

キーワード：湿球黒球温度、熱中症、黒球温度、地域性、経年変化
Keywords：Wet-Bulb Globe Temperature, heat stroke, globe temperature, locality, secular change.

I はじめに

WBGT（Wet-Bulb Globe Temperature）とは、Yaglou and Minard (1957) が提唱した、熱中症の可能性の大小を示す指標の 1 つである。日本語名訳すると、湿球黒球温度であり、環境省では、暑さ指数とも称している。WBGT は、主に 3 種類の測定値（乾球温度・湿球温度・黒球温度）を基に算出される（第 1 図）、下記の (A) は、その定義となる式である。1982 年には、労働環境や運動環境の指針として有効であると認められ、ISO（国際標準化機構）等で国際基準として位置付けられて以来、日本でもその指標が用いられるようになった。

WBGT = 0.7Th + 0.2Ty + 0.1Ta （A）

(A) の式に使用されている Th は湿球温度、Ty は黒球温度、Ta は乾球温度（単位は全て℃）を表す。

WBGT は、研究機関や省庁など、幅広く用いられており、それぞれ熱中症に対する注意を促している。例えば、日本気象学会では、WBGT の温度基準を 4 つに区分させ、それぞれの基準に対する暑熱環境の評価（第 1 表）などを行なっている。また環境省では、平成 18 年度より「環境省暑中症予防情報サイト」を開設し、熱中症についての知識や、暑熱環境のメカニズムなどについて説明している。その中には、WBGT に関する基礎知識の情報なども取り入れており、夏季には、全国各地の WBGT の速報値や予測値を、分布図などでインターネット上に公開し、熱中症の危険性を表している。

WBGT に関する従来の研究として、事例を挙げると、中井（2011）では、ヒートアイランド現象や地球温暖化による影響で、熱中症による死亡の発生が急激に高くなっていることを指摘している。その上で、熱中症による死亡者数を男女に分け、それぞれの年次推移や年齢階級別の数値分布を調べている。WBGT は、熱中症発症者数と発症当時の WBGT の温度を調査するために用いられ、グラ
でまとめている。結果として、WBGT が重症警戒（28℃～30℃）の領域内で、最も熱中症発症者数が多いということを明らかにした。登内 (2012) では、熱中症による救急搬送者数と WBGT の変化から、両者の関係を調べている。熱中症の搬送者数は、WBGT が高い日に多く、急に暑くなった日はその危険性が高くなると述べている。また都市部では、ヒートアイランド現象などの影響により、夜間も気温が低下しない期間も注意が必要であることを促している。WBGT を用いる研究は、これらの規則形で扱われることが多く、その指標は全国基準で統一されたときに、地域によってどのような分布傾向を示すのか、またそれは地球温暖化や都市化の影響で、近年に向けて上昇傾向にあるのかについては詳しく触れられていないと言える。

そこで本研究では、日本の夏季を対象に、WBGT の分布傾向から、暑熱環境の地域性を調べると共に、近年に向けてその指標はどのように変化しているのかについて考察することを目的とした。

Ⅱ 研究方法

１．対象地域・対象地点

本研究では、日本（北緯 25°～46°，東経 125°～147°）を対象地域とし、対象地点は、気象官署62地点（第2図）に選定した。

第1表 日常生活における WBGT の指針（日本生気象学会による温度区分）

<table>
<thead>
<tr>
<th>WBGT（℃）</th>
<th>基準</th>
<th>注意事項</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.0 ≤ X</td>
<td>危険</td>
<td>高齢者においては、安静状態でも発生する危険性が大きい。外出はなるべく避け、涼しい場所へ移動する。</td>
</tr>
<tr>
<td>28.0 ≤ X < 31.0</td>
<td>嚴重警戒</td>
<td>外出時はなるべく炎天下を避け、室内では室温の上昇に気を付ける。</td>
</tr>
<tr>
<td>25.0 ≤ X < 28.0</td>
<td>警戒</td>
<td>激しい運動や重労働を行う際は、定期的に休息を取り入れる。</td>
</tr>
<tr>
<td>X < 25.0</td>
<td>注意</td>
<td>一般に危険性は少ないが、激しい運動や重労働時には発生する可能性がある。</td>
</tr>
</tbody>
</table>

※稲葉・朝山（2012）：「日常生活における熱中症予防指針」（日本生気象学会）の概要より引用および作成
日本の夏季における WBGT の地域性とその経年変化

2. 対象期間・使用データ
対象期間は1991年から2010年の20年間とし、さらに、8月の午後12時～15時に限定して研究を行なった。使用データは、気象官署で観測されている気温・相対湿度・全天日射量・風速の1時間値データ（午後12時～15時）を用いた。
今回これらの気象要因を選出したのは、登内（2012）より、高温多湿で日射・輻射熱が大きく、また風が弱いほど、熱中症になるリスクが大きくなると述べていたことを参考にしたためである。そして、これらの気象要因を用いて、小野・登内（2014）が共同で研究を行ない、WBGTの推定式を提唱した。この推定式については、次節で説明する。
対象地点や対象期間を前述の通りに決めた理由は、共に使用データの1つである全天日射量が関与している。まず対象地点については、観測されている気象官署が限定されており、本研究で用いる気象要因を全て観測している地点を検討した結果、前節で述べた52地点を選定した。そして対象期間を20年間とした理由は、その観測データが、十分に収集できる年を考慮したためであり、またWBGTは、熱中症を評価するための指標であるが故に、その値が最も高く現れることを想定して、日中の12時から15時を中心に選んだ次第である。

3. WBGTの算出
本研究における前段階として、まず対象期間分のWBGTの算出を行なった。本来はYaglou and Minard（1957）によって提唱された式（A）で求めるが、第1章の第1節で記述した3種類の測定値のうち、黒球温度と湿球温度は、通常の気象要素としての観測が行われていない。湿球温度は、気象官署から気温と湿度のデータを利用すれば求めることができるが、黒球温度においては、実測地点が全国9か所のみであるために使用することができない。それを踏まえて、小野・登内（2014）では、通常の気象要素（気温・相対湿度・全天日射量・風速）のみを用いたWBGTの推定式（B）を提唱した。その式が（B）となる。

\[
\text{WBGT} = 0.735 \times T_a + 0.0374 \times RH + 0.00292 \times T_a \times RH + 7.619 \times SR - 4.557 \\
\times SR^2 - 0.0572 \times WS - 0.4064
\]

（B）

（B）の計算式に使用されている\(T_a\)は乾球温度（℃）、\(RH\)は相対湿度（％）、\(SR\)は全天日射量（kW/m²）、\(WS\)は平均風速（m/s）を表す。

（A）の式の代替として、本研究では、小野・登内（2014）で提唱された式を用いることにした。

次に研究対象となる時間帯（12時～15時）の1時間別に算出したWBGTの値を、第1表に基づいて温度基準別に当てはめ、31%分積算する。そして、温度基準別に積算したWBGTの値を、積算した最大値で割る①、さらに百分率②で各温度基準の割合を算出し、それらの値を本研究の解析に用いる。

4. 留意事項
本研究では、日本各地において、体で感じる暑熱環境について地域性が見られるのかについて研究する目的でWBGTを用いる。この指標は、気象庁の観測データを用いて算出したものであるため、実際に算出された値よりも厳しい暑熱環境③になっている可能性は十分にあると言える。また値が低く示された場合でも、無理な労働や体が熱に順応していないかったことで熱中症になることも考えられるので、観測データに基づいて算出したWBGTによる分布図や経年変化グラフを、熱中症に備えるための1つの参考資料として見てもらいたい。

III 結果と考察

1. 温度基準別割合の最大のみを用いたWBGTにおける地域区分
はじめに、WBGTによる地域性を考察するために、各地域でWBGT値を20年分積算して割合を算出し、その割合が最も大きかった温度基準のみを取り上げて、地域区分図を作成した（第3図）。地域区分を強調させるため、各温度基準の
第3図 日本におけるWBGT分布による地域区分
（1991年～2010年の平均値を用い、網掛けは50%以下の地域を示す。）

境目に線を入れると共に、各温度基準の表記について、「危険」を「Danger」、「厳重警戒」を「Strict」、「警戒」を「Warning」、「注意」を「Attention」に置き換え、各基準の英語表記の頭文字を図上に置き、区域を表した。さらに、最も大きかった温度基準の割合が50％以上なら●として、その英語表記の頭文字に1を付加させ、50％以下なら▼として、英語表記の頭文字に2を付加させた。

第3図を見ると、最も幅広い分布域を形成している温度基準は「厳重警戒」であり、東日本から西日本、また南西諸島にかけて、ほとんどがその基準の分布域となっている。この領域は、日中の気温の高さが影響しているために、WBGT値も高く現れていると考えられる。しかしそのなかで、松本と大阪は、「警戒」の割合が最も大きいという結果になった。そのほか「警戒」の割合が最も大きかった地点は、東北の日本海側や小名浜といった場所のみに存在し、非常に狭い分布域を形成している。北海道と、東北地方の北部から太平洋側に属する地点では、暑さが最も控えめである「注意」の分布域となっている。この領域は、前述した「厳重警戒」の分布域とは逆に、日中でも気温の高さが控えめであることが、WBGT値が控えめに表れる要因であると思われる。また、網掛けで示している東北地方から関東や北陸地方
日本の夏季におけるWBGTの地域性とその経年変化

第4図 WBGT 28.0℃以上の発生頻度分布（左図）と8月の日中（12〜15時）の平均気温分布（右図）

は、温度基準はそれぞれ異なるが、割合が50%を超えないといった共通点がある。このことから、この地域は1つの温度基準に依存していない領域であり、温度基準が「注意」から「厳重警戒」へ移り変わる漸増地域となっていると考えられる。

2. WBGT 28.0℃以上の発生頻度分布と8月の日中の平均気温分布との比較から見た地域性

本節では、WBGT 28.0℃以上の発生頻度と、8月の日中の平均気温の分布図を作成し、それぞれの分布傾向から地域性を考察する。

発生頻度分布図の作成について、まず20年間で1時間値（12時〜15時）に算出したWBGTの中で、28.0℃以上のものを計算の対象として取り上げた。そして、地点別に再度積算を行ない、百分率で示した値を用いて分布図を作成した。平均気温図は、気象庁から12時〜15時の気温データを抽出し、地点別に平均した値を基にして、同じように分布図で示し、双方共に等値線をいれて各図における地域性を示している。WBGTの発生頻度図は第4図の左に、平均気温図は右に示す。
なお、WBGT 28.0℃以上とした理由は、第1章で紹介した中井（2011）で、WBGTが「厳重警戒：28.0℃〜30.0℃」の領域内で、最も熱中症発症者数が多いと結論付けていることから、各地域の暑熱環境を考察する上で妥当な温度基準であるとしたためである。

まず、WBGT 28.0℃以上の発生頻度分布は、日本から西日本にかけて次第に高くなってしまい、九州南部や太平洋側に位置する島嶼部では、80%以上の発生率を占めている。しかし、第3図で触れたように、大阪や松本では、暑熱環境が控えめに表れていることが、第4図からも読み取ることができる。特に大阪は、その発生率が30%にも達していない。

平均気温分布は、発生頻度分布における分布傾向と同じように、日本から西日本にかけて気温が高くなっていることが示されている。特に、瀬戸内海東側や九州地方の西部に属する地点が、
日中の平均気温が高く、31.0℃を超えている。さらに、WBGT 28.0℃以上の発生率は低めである大阪や松本の、平均気温の高い値を示している。このことから、第3章と同時に考えると、気温の高さとWBGT値の高さは、比例する関係にある地点がほとんどだが、中に変則的な地点も存在するということになる。しかし、今回研究では、日本全国のWBGTの地域性などを調べることに着目したため、変則的な地点が存在する理由については、今後検討する必要がある。

3. WBGTの温度基準別割合の経年変化

第3章の第1節と第2節では、WBGTの温度基準別割合を基に分布図を作成し、それらの図から、暑熱環境にどのような地域性が表れるのかについて考察を行なった。本節では、都市（注記の3を参照）を代表地点として取り上げ、WBGTの温度基準別割合の20年間の動向について調べるために、経年変化グラフ（第5図）を作成して考察を行なった。以下に各地点の特徴を述べる。

① 札幌

② 仙台

年ごとに変動を繰り返す中で、「注意」の割合が大きく、暑さが控えめに感じられたとされる年もあることが伺えるが、その割合が60％を超えている年は、1991年・1993年・2001年のみに限られている。「警戒」の割合は約20〜40％を占めており、特に暑く感じられたとされる年は、1994年と2010年であり、「厳重警戒」の割合が60％以上を占めている。WBGTが31.0℃を超えた年は多々あるが、どの年においても、その割合は10％未満である。

③ 東京

この地点は、「注意」の割合が50％以上を占めた年は1度も現れず、1999年・2010年では31日全てを通じて、一度も25.0℃を下回らなかった年となっている。一方で、WBGTが28.0℃以上を示す「厳重警戒」の割合が50％以上を占める年が多く見られ、特に1994年と1995年はWBGTの31.0℃以上を示す「危険」の発生率が目立っている。WBGTの25.0℃未満の割合は、他の基準と比べて小さくなっているため、大きな変動がありながらも、その地点は若干ではあるが、暑く感じる環境になりつつあると考えられる。

④ 新潟

1993年のみ「注意」の割合が極端に高いが、その年以外は40％を切っており、近年に向けて減少傾向になっている。翌年の1994年は、「危険」の割合が35％を占め、2010年では20％を超えている。その他にも、2000年は「厳重警戒」の割合が90％を超えており、「危険」の割合は僅かであるが、その年における8月は、ほぼWBGTが28.0℃以上だったことを考えると、前述した2つの年に劣らず、熱中症になるリスクが高い年だったことが示されている。

⑤ 名古屋

この地点は「注意」の割合が非常に少なく、30％を超えた年は1度も存在していない。「危険」と「厳重警戒」の割合を合わせると、1993年以外では最低でも50％以上を占めている。1994年・1995年・2000年は、WBGTの28.0℃以上の割合が90％に達しており、さらに「危険」の割合のみで比較すると、1994年や1995年が特に暑く感じられたとされる年であることが示されている。研究対象となる20年間を全体で参照すると、この地点における暑熱環境は、近年に向けて悪化しているというよりも、長くその状態が継続していると考えられる。
日本の夏季における WBGT の地域性とその経年変化

第5図　主要都市における WBGT の温度基準別割合の経年変化（1991年～2010年）
⑥ 大阪
主要都市のみで比較すると、この地点は圧倒的に「強度警戒」よりも「警戒」の発生率が顕著であり、「危険」の割合については、ほぼ皆無と言えるほど、暑さが控えめに感じられる地点であることを示している。しかし、夏季には気温が30.0℃を超えることが多いため、WBGT値が控えめに表れるのは、気温が低いことが要因と言える難しい。第2章の第2節で記載した、登内（2012）を引用すると、高温多湿で日射・幅射熱が高く、また風が弱いほど、熱中症になるリスクが大きくなると述べられている。そのため、それらの気象要素について逆の力が働いて、結果的にWBGT値が小さくなっていると考えられる。しかし、現時点では、これ以上の考察はできないので、今後の課題とした。

⑦ 広島
20年間の中で、1993年は比較的暑さが控えめに感じられたとされる年であり、その年以降はWBGT28.0℃以上の割合が顕著に表れており、特に1995年では、「危険」の割合が約50%に達するほどである。それに次いで、2010年でもWBGT28.0℃の割合が90%以上を占めている。第4図の平均気温分布を参照すると、瀬戸内海周辺は日中の平均気温が高い地域であることから、気温の高さによる影響で、WBGT値が高くなっていると考えられる。

⑧ 福岡
他の地点と共通して、福岡でも1993年が最も暑さが控えめに表れており、翌年から「危険」の割合が目立つようになっている。1994年・1995年・2010年は、その割合が30%を超えており、特に暑く感じられたとされる年であることが示されている。また、WBGT28.0℃以上の割合は、1993年以外の年は半分以上を占めていることから、名古屋のように、暑熱環境は長くその状態が継続していると考えられる。

⑨ 鹿児島
WBGT28.0℃以上の割合が顕著であり、他の地点では暑さが控えめに表れていた1993年についても、この地点は「強度警戒」の割合が約50%に達している。名古屋や福岡と異なり、「危険」の割合が著しいのは1998年のみであるが、一方で「注意」の割合は20年間を通じて1度も10%を超えなかった。この地点においても、暑熱環境は長くその状態が継続していると考えられる。

各地点の結果を踏まえ、以下のようにまとめられる。

① WBGTの高い温度基準の割合は、年々変動がある中で、西日本に属する地点ほど大きく占めていることが伺えた。しかし、近年に向けて暑熱環境は悪化しているというよりも、その状態が長く続いているというので、各地点において共通していっていると考えられる。

② 各温度基準の割合をグラフで表示することで、年ごとに体で感じる暑さの特徴が考察できるものの、その暑さを左右させる具体的な要因までは突き止められない。

IV おわりに

1. まとめ
本研究で得られた結果は、以下の通りである。
① 東日本から西日本、または島嶼部といった広い範囲では、「強度警戒」の分布域となっている。
一方、北海道と東北地方の北部から太平洋側に属する範囲では、暑さが最も控えめである「注意」の分布域となっている。これらの地域においては、気温の影響によって、WBGT値もそれに比例する関係になっていると考えられる。
しかしその中で、松本や大阪は、その考察に当てはまらないような変則的な結果となった。
② WBGTの高い温度基準の割合は、年々変動がある。暑熱環境は、近年に向けて悪化しているというよりも、その状態が長く続いているというので、各地点において共通していると考えられる。

2. 課題
小野・登内（2014）で提唱されたWBGT推定式を用いて、分布図や経年変化グラフから、日本全国のWBGTによる地域性について表すことが
できた。しかし、大阪などの地点は、前節の通り、作図結果からの考察に当てはまらない変則的な地点となっていた。そのため、その結果を認められるよりも、本研究で用いた小野・登内（2014）の推定式は、地域性を評価するうえでは妥当な式のことを、再度検討する必要があると思われる。また解釈に用いた値は、気圧配置や気象の状態などを全く考慮せず、単純に各気象官署で観測されたデータを基に算出したものを、各温度基準に積算しただけである。そのため、WBGT 値が高く現れる要因までは突き止めることができなかった。

今回の結果を基に、さらに地域性を追求するには、推定式の妥当性の再検討と共に、気压配置の状態も考慮し、WBGT 値が高く現れる特徴などを調べる必要があると思われる。

謝辞
本稿は、法政大学文学部地理学科 2014 年卒業論文を加筆・修正したもので、本論文をまとめるにあたり、終始多大なるご指導を頂きました法政大学文学部地理学科の佐藤雅人教授に深く御礼申し上げます。また法政大学文学部地理学科気候学ゼミナールの卒業生の方々、および受講生の皆様にも多くの助言を頂き、さらに本稿は、日本地理学会主催の第 63 回全国地理学専門学生「卒業論文発表大会」（2015 年 3 月 16 日に東京学芸大学で開催）で発表する機会があり、他大学の教授の方々にも貴重な助言を頂きました。重ねて御礼申し上げます。

注記
1) 熱中症の定義については、2008 年に日本生気象学会が「日常生活における熱中症予防指針」において、「皮膚の障害などを除外した暑熱障害」としてまとめている。また中井（2011）では、暑熱環境において発生する障害で、熱失神・熱疲労・熱けいれん・熱射病などを総称したものを熱中症と表現している。
2) 黒で塗装された、薄い鋼板の球体（中は空洞）の中心に温度計を入れて観測する。球体体積は、物体が直射日光に晒された状態を想定した温度とされ、弱風時に日当たりのある体感温度と良い相関があることから、熱中症に関する調査・研究に用いられている。観測はなるべく周辺の建物などの遮蔽物が存在しない場所に設置して行う。
3) 直接電磁波の形で伝わることを放射、その熱を放射と言い、遠赤外線による熱線によって直接伝わる熱の事を表す。例えば、外気にいるときに暖かい、もしくは暑いと感じる。それは太陽が、遠赤外線による熱線を発しているからである。
4) 札幌・仙台・東京・名古屋・新潟・大阪・広島・福岡・鹿児島に球形温度の計測器を設置している。それらの計測器は全て気象官署に設置されているが、管轄は気象庁ではなく環境省である。
5) 今推定式は、2007 年～2009 年を対象に、比較的高台に位置し、建築物による太陽の遮蔽の影響が最も小さいと考えられる、名古屋地方気象台の 2008 年データを基に、他地点・他年度のデータと比較しながら解析を進めて提案されたものである。そしてこの新しい式は、解析に用いた気温の範囲を超えたとしても推定誤差が突然変化する、つまり推定式が適用不可能になるとは考えにくく、現状では日本全国で適用が可能であると考える付け。
6) 気象庁が掲載している全日気温の単位は MJ/m² だが、先行研究では kJ/m² になっている。MJ/m² から kJ/m² に換算するために、気象庁で観測された全日日射量の値を 0.6 で割って代入した。
7) ［X1（ある温度基準に当てはまる）積算した WBGT の個数 / 積算した回数］で算出する。積算した WBGT の個数および積算した回数の最大、研究対象となる 4 時間（12 時～15 時）×31 日 = 124 である。つまり、1つの基準に対する最大数は 124 個分となる。ただし欠測の日・時間帯がある場合は、それらを除いて計算するために最大数も少なくなる。
8) ［X2 = （X1）×100］で百分率を出す。［X1］は、注記 5) に記載されたから計算したものである。
9) 環境省熱中症予防情報サイトによると、ISO（国際標準化機構）の規定では、WBGT は自然通風条件下で観測することとしているが、日本で一般的に使われる気象庁の観測は、すべて強制通風条件下で行われている。また自然通風条件下で観測する場合、センサーの種類やシェルターの形状などの影響で観測値にバラつきが生じることから、WBGT の計算には、強制通風条件下で観測された気温・湿度を用いていると述べられている。

参考文献
浅井建爾（2011）：地理と気候の日本地図。株式会社 PHP 研究所、22-27、40-42、56-57、64-71、73-74、80-82、183-185。
樺室裕・朝山正己（2012）：「日常生活における熱中症予防指針」（日本生気象学会）の概要。日本臨床、70-6、1033-1038。
小野雅司（2012）：気象条件・暑さ指数 WBGT と熱中

— 69 —
福井 健弘

症状. 日本気象学会雑誌. 141-2, 305-309.
登内道彦 (2012) : 日本の夏の気象と熱中症. 日本臨床. 70-6, 981-985.
本間政人 (2012) : 熱中症に対する政府および環境省の取り組みについて. 日本臨床. 70-6, 1047-1051.